In vivo mechanistic studies on the metabolic activation of 2-phenylpropionic acid in rat.

نویسندگان

  • Chunze Li
  • Mark P Grillo
  • Leslie Z Benet
چکیده

Two alternative metabolic pathways, acyl glucuronidation and acyl-CoA formation, are implicated in the generation of reactive acylating metabolites of carboxylic acids. Here, we describe studies that determine the relative importance of these two pathways in the metabolic activation of a model substrate, 2-phenylpropionic acid (2-PPA), in vivo in rats. Male Sprague-Dawley rats were pretreated with and without (-)-borneol (320 mg/kg i.p.), an inhibitor of acyl glucuronidation, or trimethylacetic acid (TMA, 500 mg/kg i.p.), an inhibitor of acyl-CoA formation, before receiving 2-PPA (racemic, 130 mg/kg). After administration of 2-PPA, livers were collected over a 2-h period and analyzed for 2-PPA acyl glucuronidation and 2-PPA-CoA formation by high-performance liquid chromatography. Covalent binding was measured by scintillation counting of washed liver protein precipitates. Results showed that pretreatment with TMA led to a 49% decrease in covalent binding of 2-PPA to liver proteins, when a 64% decrease in the exposure of 2-PPA-CoA was observed. Conversely, 95% inhibition of acyl glucuronidation by (-)-borneol, led to a 23% decrease in covalent binding to protein. These results suggest that metabolic activation by 2-PPA-CoA formation contributes to covalent adduct formation to protein in vivo to a greater extent than metabolic activation by acyl glucuronidation for this model substrate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential effects of fibrates on the metabolic activation of 2-phenylpropionic acid in rats.

A series of studies were conducted to explore the inductive potential of different fibric acid derivatives on the two alternative metabolic activation pathways of 2-phenylpropionic acid (2-PPA) (a model substrate for profen drugs), namely acyl-CoA formation and acyl glucuronidation, in vivo in rats, and to evaluate whether such treatment could potentially modulate the covalent binding of profen...

متن کامل

Metabolic activation and DNA adduct formation of Benzo(a) pyrene by adult and newborn rat skin and liver microsomes

Benzo(a) pyrene is a carcinigen polycyclic aromatic hydrocarbon which diffuses into the environment from combustion of organic meterials.based on various epidemiological evidences it is related to lung,skin and liver cancer.mutagenicity,and immunosuppressivety are among important biological effects of Benzo(a) pyrene.after absorbtion and distribution in the body,it undergoes epoxidation by cyto...

متن کامل

Comparative biotransformation of radiolabeled [(14)C]omapatrilat and stable-labeled [(13)C(2)]omapatrilat after oral administration to rats, dogs, and humans.

Omapatrilat, a novel vasopeptidase inhibitor, is under development for the treatment of hypertension and congestive heart failure. This study describes the comparative biotransformation of radiolabeled [(14)C]- and stable-labeled [(13)C(2)]omapatrilat after administration of single oral doses to rats, dogs, and humans. The metabolites were identified by a combination of methods including reduct...

متن کامل

Inhibition of Microsome-Mediated Binding of Benzo (Α) Pyrene to "Dna By Cytosolic Reaction From Liver And Skin Rats in Cvitro

Purpose: The aim of this study was to evaluate the effect of age on the capacity of liver and epiderm of adult and weanging rats in transformation of Benzo (α) Pyrene. Materials and Methods: In a metabolic activiation assay system, cytochorome P-50 (from microsomal fraction) catalyses the formation of reactive epoxide of BaP which can then interact with exogenous DNA The capacity of cytochrome...

متن کامل

Soy Isoflavone Genistein Is a Potential Agent for Metabolic Syndrome Treatment: A Narrative Review

Metabolic syndrome has a high prevalence (about 22.4% in adult individuals) in developed countries. Inflammation due to obesity and fat accumulation is the most important factor in the progression of metabolic syndrome. In cells which have a receptor for insulin hormone, inflammatory mediators target the insulin signaling pathway and cause insulin resistance. Peroxisome proliferator-activated r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 305 1  شماره 

صفحات  -

تاریخ انتشار 2003